3D Cone beam CT & Digital Radiography Dedicated to Otorhinolaryngology

RAYSCAN

Multi-functional imaging solution

RAYSCAN m+ is an unique 2-in-1 imaging solution, combining Cone Beam CT and Digital Radiography, designed for ENT specialists.

3D CBCT applications

- Otology and cochlear Implant
- Neurotology and temporal bone
- Rhinology and sinus surgery
- Pediatric otorhinolaryngology

2D Digital radiography

- Chest exam : PA / AP / Lateral
- Laryngology
- Skull : PA / AP / Lateral / Waters
- Neck

RAYSCAN m+

The state-of-the-art CBCT technology provides more accurate 3D images and 2D digital radiography options lead you to the best possible outcomes

Otology & Neurotology

Diagnosis > Planning > Treatment

High definition CT quality enables to make precise diagnosis even on small anatomic structures of cochlea and auditory ossicles.

* Images are courtesy of SOREE Ear Clinic

Coronal

Diagnosis **> Planning >** Treatment

Case study of cochlear implant planning

The application of CBCT to cochlear implant surgery

"An accurate measurement of the length of the cochlea is a selection of the optimal type of implant, which is essential for preserving residual hearing as maximally as possible."

Dr. Bae, SC the principal doctor of the Soree Ear Clinic

"Using a high resolution cone beam CT, a line passing from the round window and the spiral center of the cochlea to its lateral wall can be correctly drawn. Thus, the length of the cochlea is measured."

Cochlea length $= 2.62A \times \ln(1.0+\Theta/235)$ = 2.62A x In (1.0+990/235) $(\Theta = 2 + 3/4 turn = 990^{\circ})$

by Escude et al. 2006

Diagnosis > Planning > **Treatment**

Diagnosis before implant surgery

Follow-up after implant surgery

Ray Digital solution I: Hearing Aid CT to shell printing *

* In progress of regulatory approval. Will be available in market soon. **Opened to discuss business partnership**

Rhinology & Sinus

Diagnosis > Planning > Treatment

Clear 3D images of sinus visualize detailed morphological information among air, bones and soft tissues. You can see more complete view of the anatomy which is not seen on 2D.

Integration with ENT navigation

Sleep Disorder

1 Patient exam by 3D CT RAYSCAN m+

Diagnosis > Planning > Treatment

RAYSCAN m+ provides 3D CT diagnosis for patient airway related to obstructive sleep apnea(OSA) which can be directly printed for OSA treatment.

Ray Digital solution II: Sleep apnea CT to sleep appliance printing *

2 CT scan of tooth information

- **3** Customized OSA by a design lab
- **4** 3D Print@your.clinic

* In progress of regulatory approval. Will be available in market soon. **Opened to discuss business partnership**

2D Radiographic Diagnosis

100um * Direct conversion

CdTe Detector*

26x24 cm

Medical grade 2D diagnosis

Medical grade detectors provide high resolution images for each clinical practice.

Skull : PA - Maxillary sinus

Skull : Waters - Maxillary sinus

Skull : Lateral

- Epiglottitis, esophagus, trachea

- Maxillary sinus

- Maxillary sinus

Our ways toward patient safety

High

Dose Level

1 Less radiation dose with Cone Beam CT

Cone Beam CT has lower radiation dose than conventional medical CT exam, according to many known scientific papers. A key ability of cone beam CT is to change the field-of-view by modulating the cone beam width. Tight beam-width and shorter scans also contribute to reducing radiation doses.

2 Short Pulsed X-ray

Pulsed X-ray operates to admit short pulse of X-ray into patient that relatively reduce radiation dose than continuous one.

Pulsed

3 Visible Light Guide

Simply move the visible guiding light to select the area of interest for diagnosis.

Low

Single touch of practice operations

Wide touch screen

- 10" wide monitor and intuitive user interface
- Image preview to verify your exam

Clinical field-of-views

3D Applications		Free FOV (Light Guide Range)		2D Applications		Free FOV (Light Guide Range)			
			Min.(cm)	Max.(cm)				Min.(cm)	Max.(cm)
	Sinus		12x3	15x10	DR	Chest		8x8	42x42
ENT	Ear		L/R 12x6 Both 12x6	16x10		LAT		8x8	42x42 42x42 26x24 42x42 26x24
	ТМЈ		L/R 8x6 Both 12x6	12x10 16x10	DR •	PA/AP		8x8	42x42 26x24
OSA	Airway		12x3	16x10	Ceph	Waters		8x8	42x42 26x24
	Jaw		8x3	12x10		Carpus		8x8	42x42 26x24

Light Guide Free FOV

Technical specifications

RAYSCAN m+ (Model: RCT710)

Specifications are subject to change without prior notice.

Patient positioning	Standing (wheelchair accessible)						
Focal spot		0.5mm					
Tube current		4~17mA	4~17mA				
Tube voltage		60~90kVp					
Detector type	CT (Default)	Scan Ceph (Option)	DR (Option)				
	CMOS	CdTe detector	a-Si TFT				
FOV / Image size	Max. 16x10cm	Max. 26x24cm	Max. 42x42cm				
Free FOV support	Yes	Yes	Yes				
Voxel / Pixel size	180~400µm	100µm	127µm				
Exposure time	14sec	4.9~9.9sec	Max. 3sec (0.2~0.8)				

(Unit : mm / inch)

СТ

DR

Top View

Ray Co., Ltd. 🖬

332-7, Samsung1-ro, Hwaseong-si, Gyeonggi-do, 18380, Korea Phone +82.31.605.1000 Email ray_overseas@raymedical.co.kr Web www.raymedical.com